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ABSTRACT 

In this study, we evaluated the relationship between older drivers’ fitness assessment profiles and 
their driving risk, represented primarily by crash and near-crash (CNC) rate, and secondarily by 
high g-force (HGF) event rate, all recorded during a naturalistic study of senior drivers. Due to 
the relatively small sample size in this pilot investigation (20 primary drivers), principal 
component analysis was used for dimension reduction and classification of the 60 total fitness 
profile metrics. Negative binomial regression models were employed to model the CNC and 
HGF events. The results indicated that contrast sensitivity measures were significantly associated 
with CNC rate. The greater the sensitivity, the lower the CNC rate, as would be the expected 
nature of that association. In the HGF event analysis, we found that CNC rate was positively 
related to HGF rate. The fitness metric contrast sensitivity was also related to HGF event rate. In 
addition, two metrics related to metacognition, a measurement of one’s perception of one’s own 
cognitive status, were associated with HGF event rate. Higher HGF rates were associated with 
greater self-rating of cognitive status as well as greater disparities between that same self-rating 
and an objective metric of cognitive status. The results of this study provide crucial information 
on the metrics and protocols which could be applied by motor vehicle departments, physicians, 
occupational therapists, Certified Driving Rehabilitation Specialists, and others for whom 
determining seniors’ fitness to drive is an important component of their work. Further, these 
results can be further investigated and validated using the much larger database of senior driver 
data collected in the Second Strategic Highway Research Program (SHRP 2) Naturalistic Driving 
Study. 
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CHAPTER 1. INTRODUCTION AND BACKGROUND 

The fitness-to-drive of seniors has been under discussion since at least the 1950s. In a letter to 
the editor of the British Medical Journal, Martin Stratford, presumably a general practitioner 
(GP), laments being put between the ostensibly competing interests of the insurance company 
and the elderly driver and his or her family. He suggests that an independent and specifically 
trained physician would be better suited to make the fitness-to-drive determination, or at least 
that the GPs who currently make such decisions be furnished with a better, more objective set of 
tools for this purpose (Stratford, 1959). This is remarkable because the identical concerns 
articulated in his letter are still very much with us and largely unresolved more than a half 
century later. Some forty years after the appearance of Stratford’s letter, Marshall and Gilbert 
(1999) conducted a survey of physicians in Saskatchewan, Canada, who were likely to be 
involved in making fitness-to-drive determinations. They found that while 57.6% of the 
respondents indicated that they do not hesitate to report patients whom they believe to be 
medically unfit to drive, an even greater percentage (59.5%) felt as Stratford did, that while 
necessary, this type of reporting harms the physician-patient relationship. Although physicians 
around the turn of the century did have better tools and information available than Stratford and 
his peers, Marshall and Gilbert still concluded that physicians’ understanding regarding the 
relationship between specific medical conditions and the resulting increments in driving risk 
tended to be poor. 

This study is a direct follow-up to the work of Antin, Lockhart, Stanley, and Guo (2012), in 
which the fitness profiles of seniors who were still driving were compared with those of a 
matched cohort of seniors who had recently ceased driving in an effort to devise fitness-to-drive 
assessment models. Results of that study showed that the fitness profiles of the drivers and non-
drivers were, not surprisingly, very different, with the drivers demonstrating better functional 
abilities than their non-driving counterparts for virtually all the metrics where there was a 
statistically significant difference. In addition, Antin et al. (2012) developed parsimonious 
models to see if driver or non-driver group membership could be predicted based solely upon the 
individual’s fitness profile. A five-factor model was 100% successful at predicting group 
membership. An even more parsimonious three-factor model was nearly perfect at predicting 
group membership; this model included the following factors (Table 1):  

Table 1. Three-factor driver/non-driver categorization model factors 
 (from Antin et al., 2012). 

Functional Dimension Factors 
Perceptual – Vision Dynamic visual acuity (24°/s) 
Physical – Strength Average Upper Body Maximum Torque 
Visual-Cognitive Trail Making (Part B) 

 

1.1 OBJECTIVE 

The current study sought to determine if the profile data used in Antin et al. (2012) could also be 
used to successfully predict safety-related outcomes observed in that same study’s naturalistic 
driving record. To the best of the authors’ knowledge, this study represents the first ever attempt 
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to relate seniors’ functional assessments to safety-related outcomes observed in naturalistic 
driving data. In the current study, the safety-related data include crash and near-crash (CNC) 
event rates as well as high g-force (HGF) event rates.  

1.2 DATA OVERVIEW 

Note that among 27 initially recruited driving participants who provided assessment data, only 
20 of them completed the naturalistic driving study (NDS) data collection. The data sources used 
and which data were provided by each group are illustrated in Table 2.  

Table 2. Project data source structure. 

 Number of Participants with… 

Participant Group Functional Assessment 
Metrics 

NDS Data 

Drivers 27 20 

Non-drivers 23 – 

Totals 50 20 

 

There are 80 CNC events, including 6 crashes and 74 near-crashes, found in the 4,158 driving 
hours for these 20 drivers. As crashes are a rare event, Guo et al. (2010) suggested that near-
crashes (which tend to occur with a frequency 10 times that of crashes) are valid crash 
surrogates. In this analysis, we combined crash and near-crash events to represent crash risk.  

However, even when near-crashes are included, crash-related events are still relatively rare. 
Therefore, we were also interested in a more frequently occurring safety-related event, high g-
force (HGF) events. HGF events include longitudinal and/or latitudinal acceleration or 
deceleration, and rapid change of driving direction (yaw rate). Guo and Fang (2013) showed that 
critical incidents are closely associated with CNC risk at the driver level. In this study, we used 
HGF to represent the risky driving behaviors. In summary, this study mainly focuses on 
exploring the relationship between senior driver fitness profiles and CNC events and, 
secondarily, their relationship to HGF events.
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CHAPTER 2. DATA  

2.1 FITNESS PROFILE DATA 

Sixty fitness-to-drive assessments were performed as the first step in the study (and the only step 
for the non-drivers); these are listed in Appendix A. In this analysis, 12 of the 60 metrics (i.e., 
the seven color vision metrics and left eye contrast sensitivity [CSL] metrics) were dropped from 
the analyses for various reasons. For example, the color vision metrics have essentially identical 
values for almost all participants, thus providing no modeling-relevant information; the CSL 
metrics are suspected to possibly have data quality issues and must be explored further to be used 
in any subsequent analyses. Details of the 48 metrics used are shown in Appendix A. The 48 
remaining assessment metrics measured from the 50 participants (27 drivers, 23 non-drivers) 
were included in the analyses. Note that among the 27 participants in the “drivers” category who 
contributed assessment data, only 20 of those individuals actually participated as drivers in the 
naturalistic driving data collection and were included in the driving-risk-related modeling. 

There are several missing values in the fitness profile data. A complete data analysis that only 
includes participants with a full data record would greatly reduce the sample size. Therefore, a 
data imputation approach was used whereby missing values were replaced with the means drawn 
from the non-missing values. Because Antin et al. (2012) suggested that older driver and non-
driver groups may have very different fitness profiles, the missing values were therefore imputed 
by the group mean of either drivers or non-drivers, depending on which group the individual 
represented. 

2.2 CRASH AND NEAR-CRASH (CNC) EVENT DATA 

A crash is defined as any contact with an object, either moving or fixed, at any speed in which 
kinetic energy is measurably transferred or dissipated. Crashes include a participant’s vehicle 
making contact with other vehicles, roadside barriers, objects on or off the roadway, pedestrians, 
cyclists, or animals. A near-crash is defined as any circumstance requiring a rapid, evasive 
maneuver by the participant (or his/her vehicle) or any other vehicle, pedestrian, cyclist, or 
animal to avoid a crash. The crashes and near-crashes were identified through a multiple-step 
process of automatic trigger identification followed by visual confirmation by experts as 
described in Dingus et al. (2006).  

2.3 HIGH G-FORCE (HGF) EVENT DATA 

The HGF data are recorded by accelerometers installed in participants’ vehicles. The 
accelerometers measured longitudinal and latitudinal acceleration at a temporal resolution of 10 
Hz. The direction of the g-force is indicated by the “plus or minus” sign “±”. There are over 
127.5 million syncs in the 3,542 hours of recorded g-force data. Because of the high sensitivity 
of the accelerometers, g-force values often fluctuate rapidly. This impacts identification of HGF 
events, as they are defined such that each begins when the g-force value first exceeds a 
predetermined threshold and ends when the value returns below the threshold. Rapid fluctuation 
will unnecessarily result in an excessive number of HGF events caused by noise in signals. 
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A remedy is to apply a smoothing method to reduce the number of spurious events in the data. In 
this study, we employed the centered moving average (CMA) method with a moving window of 
10 syncs. There is a trade-off in choosing the moving window: too small a window cannot 
effectively remove spurious HGF events; too large a window will mask actual HGF events of 
interest. The SAS EXPAND procedure with the (CMOVAVE n) command was used to compute 
the centered moving average. It computed the mean of n values of 𝑋𝑋𝑖𝑖 for observation t − (n −
1)/2 ≤ i ≤ t + (n − 1)/2. Because n = 10 is an even number, the formula will compute the 
mean of Xi’s for t − 4 ≤ i ≤ t + 4 (i.e., 9 entries). The 10-sync averaged g-force value in a 
particular sync t is computed as: 

𝑋𝑋𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶10 = 𝑋𝑋𝑡𝑡−4+𝑋𝑋𝑡𝑡−3+⋯+𝑋𝑋𝑡𝑡+⋯+𝑋𝑋𝑡𝑡+3+𝑋𝑋𝑡𝑡+4
9

 

A graphical example with 200 syncs taken from a trip file is shown in Figure 1 to demonstrate 
the smoothing effect. The raw data have a high frequency component that would yield an 
excessive number of false safety events. The data after the CMA is applied are much smoother, 
while still retaining sufficient detail. The figure shows that four HGF events will be identified 
(during sync number 3904–3924) when raw data are evaluated, whereas there will be only one 
HGF event identified if using CMA smoothed data.  

 
Figure 1. Graph. Example of the effect of the application of CMA10 smoothing on a sample 

of HGF data. 

Another major challenge with HGF events is defining the threshold g-force values. Compared 
with the identification of CNC events, which relies on police reports, self-reports, algorithms, 
and video reduction, the identification of HGF events solely relies on the accelerometer data, and 
there is currently no standardized g-force threshold to define an HGF event. Thus, a trial-and-
error approach was employed to choose a reasonable threshold. In all, we evaluated four 
combinations of threshold values as shown in Table 3. 
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In the preliminary analysis, we investigated longitudinal HGF, latitudinal HGF, and combined 
HGF events. The combined HGF events are defined such that either longitudinal or latitudinal 
(or both) exceed threshold values. Results suggested that the events in one dimension 
(longitudinal or latitudinal only) did not yield stable HGF event counts, while combined HGF 
events did yield more reliable, robust performance. 

After four trials, we proposed the thresholds for HGF events as longitudinal ±0.45g and 
latitudinal ±0.45g. With this threshold, there were from 0 to approximately 100 HGF events for 
each driver, which is a reasonably good set of numbers for the subsequently developed negative 
binomial regression models. 

Table 3. Summary of HGF threshold trials. 

Threshold Values Reasoning Results 

Long.: ± 0.2g 

Lat: ±0.1g 

Use low values for older drivers Ca. 5,000 to 50,000 HGF events 
for each driver 

Long.: 0.35−0.45g 

Lat: ±0.4g 

Adapted from Simons-Morton et al. 
(2012) 

Ca. 100 to 2,500 HGF events 
for each driver 

Long.: ± 0.6g 

Lat: ±0.7g 

Adapted from Guo et al. (2010) Too few HGF events identified 

Long.: ± 0.45g 

Lat: ±0.45g 

Trial and error  This is the combined threshold 
that was used in this analysis 

 

2.4 CRASH/NEAR CRASH AND HIGH G-FORCE DATA BY DRIVER 

The driving risk was measured by the CNC and HGF. The CNC and HGF rates are defined as 
the number of events per 100 hours of driving. Note that two drivers (subject IDs 1151 and 1171) 
have substantially higher HGF event rates (428.32 and 113.41 HGF events per 100 hours driven) 
compared with the other participants. Considering that older drivers typically demonstrate more 
conservative driving behaviors, such high HGF rates likely result from errors in the mounting or 
functioning of the accelerometer subassembly. Therefore, data from these participants were 
removed from further HGF event analysis. As shown in Table 4, there are 1,245 HGF events 
identified for the remaining 18 drivers. HGF rates are plotted across a lowest-to-highest ordered 
plot of CNC rates in Figure 2. A scatter plot of HGF and CNC rates is shown in Figure 3. 



6 
 

Table 4. CNC and HGF event summary table. 

Driver 
ID 

Gender Hours 
Driven 

CNC 
Events 

CNC  
Rate 

HGF 
Events 

HGF 
Rate 

1011 M 199.3 0 0.00 77 38.63 

1021 M 59.7 2 3.35 20 33.52 

1031 F 302.0 4 1.32 60 19.87 

1041 M 313.3 10 3.19 252 80.43 

1051 M 436.9 18 4.12 222 50.81 

1061 M 184.6 2 1.08 31 16.80 

1071 M 340.7 2 0.59 51 14.97 

1081 M 437.6 9 2.06 118 26.97 

1091 F 128.2 6 4.68 57 44.46 

1101 M 114.2 2 1.75 60 52.56 

1111 F 115.8 2 1.73 75 64.80 

1121 M 369.1 2 0.54 54 14.63 

1131 F 102.2 6 5.87 29 28.37 

1141 F 39.7 1 2.52 3 7.55 

1151 M 192.4 4 2.08 – – 

1161 F 69.1 1 1.45 28 40.53 

1171 F 268.3 3 1.12 – – 

1181 F 189.4 2 1.06 41 21.65 

1191 M 184.1 2 1.09 32 17.38 

1201 F 111.2 2 1.80 35 31.47 

Total – 4,158 80 – 1,245 – 
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Figure 2. Graph. CNC (right y-axis) & HGF (left y-axis) rates (ordered by lowest to highest 
CNC rate) for each of the 18 remaining driving participants. 

 

 
Figure 3. Graph. CNC by HGF scatter plot with linear trend line (r = 0.41, p = 0.0891). 
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CHAPTER 3. STATISTICAL METHODS 

3.1 DIMENSIONALITY REDUCTION: PRINCIPAL COMPONENT ANALYSIS 

Fitness profiles (Appendix A) comprised 48 assessment metrics (P = 48 columns) and 50 
participants (N = 50 rows). Many of these metrics are highly correlated, as they measure very 
similar or related constructs. When performing the regression analysis, it is not possible to 
include all metrics as regressors, mainly because (1) the number of observations N is similar to 
than the number of regressors P; and (2) there is a severe multicollinearity issue due to the high 
correlations among many of the fitness metrics. 

To address this issue, we applied principal component analysis (PCA) to reduce the 
dimensionality of the redundant and correlated fitness profile data (Jolliffe, 2002). PCA uses 
orthogonal transformation to convert correlated metrics into a set of uncorrelated principal 
components (PCs), which are linear combinations of optimally weighted observed metrics. The 
first PC has the highest variance and accounts for the highest proportion of the variability of the 
data. Each succeeding component in turn has the highest possible variance among the remaining 
components, while maintaining orthogonality with preceding components.  

The advantages of PCA include: (1) it maximizes the useable information in the data through the 
dimension reduction activity; (2) the derived PCs are not correlated, which eliminates the 
multicollinearity issue in subsequent modeling; and (3) the factor loading pattern of the PCs can 
help detect which metrics are closely related and have significant impact on a particular PC. 

3.2 MODELING CNC AND HGF EVENTS USING NEGATIVE BINOMIAL 
REGRESSION 

Preliminary analysis has shown that the CNC event data have a moderate variance over-
dispersion issue (chi-square/degree of freedom [DF] value at 1.7~2.0), while HGF data have an 
even more severe problem in this area (chi-square/DF larger than 10). 

Negative binomial (NB) regression can be used to model over-dispersed count data (e.g., HGF 
events). For data with moderate over-dispersion, the additional dispersion parameter in the NB 
regression model accounts for extra heterogeneity much better (the chi-square/DF values for NB 
models are typically < 1.4). Therefore, NB regression was adopted to model both CNC and HGF 
events. In NB models, the number of CNCs or HGFs is assumed to follow a negative binomial 
distribution, 

Yi~NB(Eiλi, γ) 

with E(Yi) = Eiλi, Var(Yi) = Eiλi+ (Eiλi)2 × 𝛾𝛾, 

where 𝑌𝑌𝑖𝑖 is the number of CNCs or HGFs for driver i. λi is the expected CNC or HGF rate (the 
number of events per 100 hours driven) for driver i. The exposure 𝐸𝐸𝑖𝑖 is measured by the number 
of hours driven, measured in a unit of 100 hours. 𝛾𝛾 is the dispersion parameter; when 𝛾𝛾 
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converges to 0, the variance of Y converges to the mean of Y, and the NB model converges to a 
Poisson model. 

The expected CNC or HGF rate λi (per 100 hours driven) follows as: 

log (λi) = β0 + ∑ βjXij,
𝐽𝐽
𝑗𝑗=1  

where Xij is the jth covariate, typically the PC for driver i; the β′s are the regression coefficients. 
For regression models with a single PC, J = 1. 
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CHAPTER 4.  CNC ANALYSIS RESULTS 

A principal component regression (PCR) was conducted in which a PCA was used to reduce the 
dimensionality of the covariate matrix and followed by NB regression. The details of PCA for all 
50 participants and 48 metrics is presented in Section 4.1. The subsequent NB regression models 
identified one PC that is significantly related to CNC risk. In Section 4.2, we use the five 
significant metrics identified in section 4.1 to conduct another round of PCR. Section 4.3 
describes the use of NB regression analysis to screen all 48 individual metrics to recover any 
metrics that are individually significant but are not included the PCs in sections 4.1 and 4.2. In 
sections 4.4 and 4.5, we finalize the CNC analysis by proposing a final model and discussing the 
model’s properties. 

4.1 PCA AND NB REGRESSION ON 48 METRICS 

4.1.1 PCA 

The first step of PCA is to identify significant principal components for the set of correlated 
metrics. The eigenvalue-one criterion was used to choose the important or information-rich PCs 
(i.e., ones with eigenvalue > 1, Kaiser, 1960).  

Although the PCA technique reduces the dimensionality of the covariate matrix, it is constrained 
by the ratio of N/P (i.e., the ratio between sample size and the number of variables). In general, 
N/P should be at least 2 and ideally be greater than 5 to 10 for the PCA to perform well. The 
fitness profile data comprise N = 50 participants and P = 48 assessment metrics. Therefore, it is 
not appropriate to conduct PCA for all metrics simultaneously. To overcome this obstacle, we 
divided the fitness metrics into four categories by the nature of the metrics: (1) physical ability, 
(2) visual ability, (3) health, and (4) cognitive ability. PCA was conducted for each of these 
categories and the N/P ratio was at least 2. 

The PCs for each category identified by PCA are shown in Table 5–Table 8. There are three, 
seven, three, and three significant PCs for each category, respectively. These PCs account for 
73%, 74%, 59%, and 75% of total variability for each category of data. In this study, we labeled 
these components as physical component 1–3, visual component 1–7, general health component 
1–3, and cognitive component 1–3. 

Table 5. Principal components for physical ability. 

Component Eigenvalue Proportion Total 
Variability 

Cumulative Proportion 
Total Variability 

1 6.41 0.49 0.49 

2 1.68 0.13 0.62 

3 1.36 0.10 0.73 
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Table 6. Principal components for visual ability. 

Component Eigenvalue Proportion Total 
Variability 

Cumulative Proportion 
Total Variability 

1 4.34 0.23 0.23 

2 2.68 0.14 0.37 

3 1.82 0.10 0.47 

4 1.50 0.08 0.54 

5 1.36 0.07 0.62 

6 1.22 0.06 0.68 

7 1.06 0.06 0.74 

 

Table 7. Principal components for general health. 

Component Eigenvalue Proportion Total 
Variability 

Cumulative Proportion 
Total Variability 

1 2.49 0.25 0.25 

2 1.77 0.18 0.43 

3 1.62 0.16 0.59 

 

Table 8. Principal components for cognitive ability. 

Component Eigenvalue Proportion Total 
Variability 

Cumulative Proportion 
Total Variability 

1 1.86 0.31 0.31 

2 1.51 0.25 0.56 

3 1.16 0.19 0.75 
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4.1.2 Negative Binomial Regression  

Negative binomial regression was used to model the relationship between CNC rate and each of 
16 PCs respectively. Results indicate that only one PC (the Visual-1 component) has statistically 
significant impacts on CNC rate.  

The factor loading pattern of the metrics for the significant component (with respect to the NB 
model) is listed in Table 9. The magnitude (ranging between 0–100) of the numbers indicates the 
factor loading (relative contribution) of each metric for that particular component. The positive 
or negative sign of the numbers indicates the positive or negative relationship between the metric 
and the component. The metrics with magnitude greater than 40 (marked with an asterisk) are 
considered to have a substantial contribution to the particular component (Stevens, 1986). This 
way we can group the metrics based on their similar contributions to a particular component. 

Table 9. Factor loading pattern of Visual-1 component. 
Metric Visual-1  
DVAC2 4  
DVAC4 7  
DVAC6 9  
DGR -1  
Glare Acuity 16  
Glare CS 1 10  
Glare CS 2 -15  
Glare CS 3 2  
ACUITY -22  
CSR 1.5 87 * 
CSR 3 85 * 
CSR 6 85 * 
CSR 12 76 * 
CSR 18 53 * 
Color Sum 14  
OPT1 5  
OPT2 10  
OPT3 24  
OPT4 8  

 

From Table 9, we identified five metrics with substantial contributions to the Visual-1 
component. The summary is shown in Table 10. 
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Table 10. Significant component and assessment metrics in NB regression. 

Component Number of 
significant 
metrics 

Significant metrics with substantial factor loading 

Visual-1 5 Right Eye Contrast Sensitivity (CSR 1.5, CSR 3, CSR 6, CSR 12, 
CSR 18) 

 

In summary, PCA reduced the dimension of the fitness profile from 48 metrics to 16 PCs in four 
categories. Negative binomial regression indicated that one PC in the visual ability category has 
a significant relationship with the CNC rate. Five fitness assessment metrics have substantial 
contributions in the Visual-1 component. 

4.2 PCA AND NB REGRESSION ON FIVE METRICS 

The Visual-1 component identified in Section 4.1 contains a large number of metrics with minor 
contributions to the PC. If a metric is retained in the component, its value is required in order to 
compute the PC score in the future, even when it has only a minor contribution. These metrics 
with minor contributions do not lend much to the analysis. Therefore, we performed PCA with 
only the five significant metrics listed in Table 9. There is only one PC generated (Table 11); this 
is consistent with the result in Table 10. This PC accounts for 67% of the total variability. 

Table 11. Principal component for five metrics. 

Component Eigenvalue Proportion Cumulative 

PC-1 3.36 0.67 0.67 

 

The factor loading pattern of the PC is listed in Table 12. The result indicated that all five 
metrics contributed significantly to only one PC with eigenvalue greater than 1. This is 
consistent with the results in Table 9. The grouping outcome can help to determine which 
metrics are closely related.  

NB regression was performed on the newly generated PC. Results show that PC-1 is 
significantly related to CNC rate. The metrics with substantial contributions are summarized in 
Table 12. PC-1 represents right eye contrast sensitivity across all the spatial frequencies 
measured from 1.5 to 18 cycles per degree. 
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Table 12. Factor loading pattern of principal component. 

Metric PC-1  

CSR 1.5 79 * 

CSR 3 78 * 

CSR 6 91 * 

CSR 12 90 * 

CSR 18 72 * 

 

4.3 NB REGRESSION SCREENING ON 48 METRICS  

In Sections 4.1 and 4.2, the NB regression analyses were based on principal components. 
Because the four categories in Section 4.1 were predefined by the researchers, it is possible that 
the categorization was not optimal. There may be some individual metrics that are individually 
significant (with respect to the NB model) but that are not included in important components, or 
the important component is not statistically significant (with respect to the NB model). Either 
way, the potential significant metric will be masked in the PCs. To recover any potential 
significant metrics that are masked by the procedures discussed in Sections 4.1 and 4.2, we used 
NB models to screen all 48 metrics individually.  

The NB regression analyses were performed on each of 48 individual metrics. Among 48 
metrics, only 3 metrics (CSR 1.5, CSR 6, CSR 12) are individually significant (p-value smaller 
than 0.05). Note that CSR 3 and CSR 18 are in the principal components in Sections 4.1 and 4.2, 
but are not individually significant. However, because the five CSR measures are an integrated 
part in the fitness profile test and are highly related (Table 13), we chose to keep CSR 3 and CSR 
18 in the model in order to stabilize the PCA computation and enhance the interpretability of the 
results.  
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Table 13. Correlation matrix of five CSR measures. 

 CSR 1.5 CSR 3 CSR 6 CSR 12 CSR 18 

CSR 1.5 1 0.69 (< .001*) 0.60 (< .001) 0.57 (< .001) 0.36 (.010) 

CSR 3  1 0.69 (< .001) 0.52 (< .001) 0.27 (.062) 

CSR 6   1 0.79 (< .001) 0.59 (< .001) 

CSR 12    1 0.76 (< .001) 

CSR 18     1 

   *The numbers inside parentheses are p-values. 

4.4 PROPOSED MODEL FOR CNC ANALYSIS 

The results of the analyses thus far indicate that, among 48 older driver fitness-to-drive profile 
matrices, only five metrics related to the right-eye contrast sensitivity (CSR 1.5, 3, 6, 12, 18) 
have a statistically significant impact on CNC rate (p < 0.05). One principal component 
generated by these five metrics accounts for 67% of total data variability (Table 11 and Table 
12). Therefore, we propose this model (Section 4.2) to be our best model for CNC data analysis. 

The NB model estimation results for the proposed model are shown in Table 14–Table 17. Table 
15 and Table 16 indicate that the PC is statistically significant in the regression model (p < 0.05). 
The CNC risk rate ratio is shown in Table 17. As the value of PC increases by 1 unit, the CNC 
risk rate decreases by 23%. The higher or better the contrast sensitivity score is, the lower the 
associated CNC risk.  

Table 14. Model goodness-of-fit for proposed model. 

Criterion DF Value Value/DF 

Deviance 18 22.92 1.27 

Scaled Deviance 18 22.92 1.27 

Pearson Chi-square 18 24.91 1.38 

Scaled Pearson X2 18 24.91 1.38 

Full Log Likelihood  -42.82  

Akaike Information Criterion (AIC) (smaller is better)  91.64  

Bayesian Information Criterion (BIC) (smaller is better)  94.63  
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Table 15. Parameter estimation for proposed model. 

Parameter DF Estimate Standard 
Error 

Wald 95% 
Confidence Limits 

p-value 

Intercept 1 0.585 0.148 0.296 0.875 < 0.001 

Component-1 1 -0.263 0.103 -0.465 -0.061 0.011 

Dispersion 1 0.086 0.145 0.003 2.385  

 

Table 16. LR statistics for Type III analysis. 

Parameter DF Chi-square P-value 

Component-1 1 4.49 0.034 

 

Table 17. Risk rate ratio for proposed model. 

Risk Rate Ratio 95% Lower Confidence Limit  
(LCL) 

95% Upper Confidence Limit  
(UCL) 

0.769 0.628 0.941 

 

4.5 CALCULATION OF PREDICTED RISK RATE BASED ON PROPOSED MODEL 
PARAMETERS 

To predict the CNC risk rate for future data, the first step is to obtain measurements of CSR 1.5, 
3, 6, 12, and 18 (here written as 𝑥𝑥1,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 to 𝑥𝑥5,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓). The principal component score for this 
observation is computed by summing the products of the standardized scoring coefficient 𝛼𝛼𝑖𝑖 and 
the standardized values of 𝑥𝑥0𝑖𝑖. 

𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =  ∑ 𝛼𝛼𝑖𝑖 × 𝑥𝑥𝑖𝑖,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓−𝑥̅𝑥𝑖𝑖
𝑠𝑠𝑖𝑖

5
𝑖𝑖=1 , 

where 𝛼𝛼𝑖𝑖 is the standardized scoring coefficient for the ith metric; 𝑥̅𝑥𝑖𝑖 and 𝑠𝑠𝑖𝑖 are the mean and 
standard deviation of the ith metric. Table 18 shows the coefficients for 𝛼𝛼𝑖𝑖 , 𝑥̅𝑥𝑖𝑖, and 𝑠𝑠𝑖𝑖 derived in 
the current study. They can be used to calculate the PC value for data collected in the future. 
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Table 18. Coefficients for computing PC Score for CNC proposed model. 

Metric 𝜶𝜶𝒊𝒊 𝒙𝒙�𝒊𝒊 𝒔𝒔𝒊𝒊 

CSR 1.5 0.234 4.440 0.907 

CSR 3 0.231 4.880 1.350 

CSR 6 0.270 3.640 1.156 

CSR 12 0.267 2.720 1.429 

CSR 18 0.214 1.920 1.794 

 

The predicted CNC risk rate (i.e., the number of CNC events per 100 hours driven) is computed 
as: 

CNC rate𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =  exp (𝛽𝛽0 + 𝛽𝛽1 × 𝑃𝑃𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓), 

 where 𝛽𝛽0 and 𝛽𝛽1 are the estimated regression coefficients presented in Table 15 above.
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CHAPTER 5. HIGH G-FORCE ANALYSIS RESULTS 

The HGF event analysis was performed in a similar manner to the CNC analysis described 
above. To construct statistical models for HGF events, the first step is to screen and identify 
HGF events from raw data. In section 5.1, we model the relationship between CNC rate and 
HGF rate using NB regression modeling. In section 5.2, we use NB regression to model the 
relationship between HGF rate and the 16 PCs generated in the PCA part of Section 4.1. In 
Section 5.3, we use the eight significant metrics identified in section 5.2 to conduct PCR. Section 
5.4 describes the use of NB regression analysis to screen through all 48 metrics to recover any 
metrics that are individually significant but that are not included in the PCs in sections 5.2 and 
5.3. In section 5.5, we finalize the HGF analysis by proposing a final model and discussing the 
model’s properties. 

5.1 THE RELATIONSHIP BETWEEN CNC AND HGF EVENT RATE 

Both CNC and HGF events are undesired safety outcomes and it is of interest to explore the 
relationship between them. It is widely accepted that the CNC rate directly reflects driving risk 
under any particular set of circumstances. Whether high g-force events indicate potentially 
dangerous or higher risk driving behavior is still up for debate. Several studies have shown that 
high g-force events or critical incidents are a predictor for CNC (Guo and Fang, 2013; Simons-
Morton et al., 2012). Others argue that drivers who drive a sports car may tend to have more 
HGF events, attributable more to driving style than a genuine increase in driving risk. In the case 
of the older driver population, which tends to have a more conservative driving style, increased 
HGF event rates may truly reflect their physical and mental states rather than an aggressive 
driving style (though the final impact on safety may be similar).  

We assessed whether there is a connection between CNC rate and HGF rate among older drivers. 
The scatter plot (Figure 4; data labels correspond to the index in Table 4) indicates a strong 
positive trend between CNC rate and HGF rate. We use negative binomial regression to model 
such a relationship. The response variable is the CNC frequency, and the covariate is the HGF 
event rate.  
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Figure 4. Graph. Scatter plot of CNC rate vs. HGF rate. 

 

Model results are shown in Table 19 –Table 22. Table 19 details the negative binomial model’s 
goodness of fit. Table 20 and Table 21 indicate that the CNC rate is strongly associated with the 
HGF rate (p-values less than 0.05). The risk rate ratio of CNC risk is shown in Table 22. It 
indicates that as the value of the HGF rate increases by 1 unit, the CNC risk rate increases by 
1.8%. This indicates that a higher HGF rate is associated with a higher CNC risk. 

 

Table 19. Goodness-of-fit for negative binomial model. 

Criterion DF Value Value/DF 

Deviance 16 19.30 1.21 

Scaled Deviance 16 19.30 1.21 

Pearson Chi-square 16 19.94 1.25 

Scaled Pearson X2 16 19.94 1.25 

Full Log Likelihood  -38.94  

AIC (smaller is better)  83.87  

BIC (smaller is better)  86.55  
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Table 20. Parameter estimation for NB model comparing CNC and HGF rates. 

Parameter DF Estimate Standard Error Wald 95% Confidence Limits p-value 

Intercept 1 0.010 0.340 -0.656 0.677 0.976 

HGF rate 1 0.018 0.008 0.002 0.033 0.024 

Dispersion 1 0.148 0.146 0.021 1.031  

 

Table 21. LR statistics for Type III analysis, CNC rate vs. HGF rate. 

Parameter DF Chi-square Pr > Chi-square 

HGF rate 1 4.02 0.045 

 

Table 22. Risk rate ratio for NB model comparing CNC and HGF rates. 

CNC Risk Rate Ratio 95% LCL 95% UCL 

1.018 1.002 1.034 

 

5.2 NB REGRESSION ON 16 INDIVIDUAL PCS 

We used NB regression to model the relationship between HGF rate and each of 16 PCs 
identified in Section 4.1, which represent 48 fitness profile metrics across four categories. The 
results indicate that the principal components Cognitive-1 (p-value = 0.004) and Visual-5 (p-
value = 0.016) are significant, and Visual-1 (p-value = 0.063) has a p-value close to 0.05. The 
factor loading patterns (Table 23 and Table 24) indicate that nine fitness profile metrics (marked 
by an asterisk) make a significant contribution to these three PCs. 
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Table 23. Factor loading pattern of Visual-1 and Visual-5 components. 
Metric Visual-1  Visual-5  

DVAC2 4  -8  

DVAC4 7  11  

DVAC6 9  -5  

DGR -1  -33  

Glare Acuity 16  -50 * 

Glare CS 1 10  -4  

Glare CS 2 -15  6  

 Glare CS 3 2  -15  

ACUITY -22  -3  

CSR 1.5 87 * 16  

CSR 3 85 * 5  

CSR 6 85 * -4  

CSR 12 76 * -4  

CSR 18 53 * -25  

Color Sum 14  89 * 

OPT1 5  25  

OPT2 10  10  

OPT3 24  -27  

OPT4 8  20  
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Table 24. Factor loading pattern of Cognitive-1 component. 

Metric Cognitive-1  

Cog 2  

Meta 96 * 

Ratio 95 * 

MI -5  

UFoV 14  

TM -14  

 

5.3 PCA AND NB REGRESSION ON NINE METRICS 

The PCA is performed on the nine metrics identified in Section 5.2. The factor loading patterns 
(Table 25) indicate three distinguishable PCs. The NB multiple regression is performed on all 
seven combinations of PCs (Table 26). Based on AIC, the BIC criteria, and the likelihood ratio 
test, Model 4 (with PC 2, 3) is the best model. The contributing metrics include Meta, Ratio, 
CSR 18, Glare Acuity, and Color Sum. 

Table 25. Factor loading patterns for nine metrics, before variable screening. 

Metric PC-1  PC-2  PC-3  

CSR 1.5 82 * -4  21  

CSR 3 80 * 22  14  

CSR 6 90 * 2  -11  

CSR 12 87 * -4  -21  

CSR 18 67 * -16  -48 * 

Glare Acuity 23  12  -65 * 

Color Sum 26  -4  77 * 

Meta 0  95 * -1  

Ratio 2  94 * -13  
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Table 26. NB regression model selection result. 

Model PC in 
the 

model 

Significant 
PC 

AIC BIC -2 log 
likelihood 

Pearson chi-
square/DF 

Dispersion 
parameter 

1 1,2,3 2 171.33 175.78 161.34 1.26 0.15 

2 1,2 1 171.68 175.24 163.68 1.11 0.18 

3 1,3 None – – – – – 

4 2,3 2, 3 170 173.56 162 1.15 0.16 

5 1 None – – – – – 

6 2 None – – – – – 

7 3 3 172.19 174.86 166.2 1.26 0.21 

 

5.4 NB REGRESSION SCREENING USING 48 METRICS  

Similar to Section 4.3, we performed NB regression to recover any potentially significant metrics 
masked during PCA. The response variable is HGF frequency, and the covariate is each of 48 
metrics. Results show that five individual metrics are statistically significant: Upper I RT (p-
value = 0.019), Upper P RT (p-value = 0.020), CSR 1.5 (p-value = 0.019), CSR 3 (p-value = 
0.03), and Color Sum (p-value = 0.012). In addition, two metrics have p-values close to 0.05: 
Meta (p-value = 0.06) and Ratio (p-value = 0.075). Note that CSR 18 and Glare Acuity are not 
significant by themselves, although they are contributing metrics in the PCs. 

5.4.1 PCA and NB Regression on Nine Metrics after Variable Screening 

We then performed PCA on the nine important metrics mentioned above. The factor loading 
patterns (Table 27) show four PCs. The NB regression results on all 15 combinations of PCs are 
shown in Table 28. AIC, BIC, and LRT criteria all suggest that Model 9 (with PC-2 and PC-3) is 
the best model. Note that although the results from Model 11 are significant, we did not include 
PC-3 and PC-4 in the final because these two metrics are not individually significant (Model 14, 
15). The most important five metrics contributing to PC-2 and PC-3 are CSR 1.5/3/18, Meta, and 
Ratio. 
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Table 27. Factor loading patterns for nine metrics, after variable screening. 

Metric PC-1  PC-2  PC-3  PC-4  

Upper I RT 97 * -3  -3  -13  

Upper P RT 99 * -5  -8  -1  

CSR 1.5 -10  90 * -9  -5  

CSR 3 6  87 * 18  3  

CSR 18 -16  50 * -16  51 * 

Color Sum -15  35  -7  -76 * 

Glare Acuity -22  21  10  71 * 

Meta -8  2  95 * -1  

Ratio -3  1  95 * 10  
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Table 28. NB regression model selection summary. 

Model PC in 
the 

model 

Significant 
PC 

AIC BIC -2 log 
likelihood 

Chi-square/
DF 

Dispersion 

1 1,2,3,4 2 170.09 175.43 158.08 1.51 0.12 

2 1,2,3 2 168.12 172.57 158.12 1.40 0.12 

3 1,2,4 2 171.23 175.68 161.22 1.32 0.16 

4 1,3,4 None – – – – – 

5 2,3,4 3 170.07 174.53 160.08 1.27 0.14 

6 1,2 2 169.48 173.05 161.48 1.24 0.16 

7 1,3 None – – – – – 

8 1,4 None – – – – – 

9 2,3 2, 3 168.23 171.79 160.24 1.17 0.14 

10 2,4 None – – – – – 

11 3,4 3, 4 171.52 175.08 163.52 1.10 0.18 

12 1 1 171.84 174.51 165.84 1.10 0.21 

13 2 2 170.53 173.20 164.52 1.17 0.19 

14 3 None – – – – – 

15 4 None – – – – – 

 
5.5 PROPOSED BEST MODEL FOR HGF ANALYSIS 

The PCA (Table 29) was performed on the five significant metrics discussed above. The first two 
PCs account for 75.6% of the total data variability. NB regression was performed on all three 
combinations of PCs (PC-1 only, PC-2 only, and both PC-1 and PC-2). AIC, BIC, and LRT 
criteria were used for model selection. The results indicated that the model with both P-1 and 
PC-2 provided the best fitting. 
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Table 29. Factor loading pattern on proposed HGF model. 

Metric PC-1  PC-2  

CSR 1.5 90 * -6  

CSR 3 85 * 20  

CSR 18 61 * -11  

Meta -1  95 * 

Ratio -1  95 * 

 

The model estimation results (Table 30–Table 33) show that some of the contrast sensitivity 
metrics (CSR 1.5, 3, 18) and two metrics related to metacognition (self-estimated mental 
sharpness [Meta] and metacognition ratio [Ratio]) are strongly associated with HGF events. 
When PC-1 increases by 1 unit, the HGF rate decreases by 22%, indicating that high CSR scores 
are related to lower HGF rate. In contrast, when PC-2 increases by 1 unit, the HGF rate increases 
by 50%, indicating that high Meta and Ratio scores are associated with higher HGF rate.  

Table 30. Goodness-of-fit for proposed NB model for HGF analysis. 

Criterion DF Value Value/DF 

Deviance 15 19.27 1.28 

Scaled Deviance 15 19.27 1.28 

Pearson Chi-square 15 17.05 1.14 

Scaled Pearson X2 15 17.05 1.14 

Full Log Likelihood  -80.48  

AIC (smaller is better)  168.96  

BIC (smaller is better)  172.52  
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Table 31. Parameter estimation for proposed HGF model. 

Parameter DF Estimate Standard Error Wald 95% Confidence Limits p-value 

Intercept 1 3.347 0.113 3.127 3.568 < .0001 

PC-1 1 -0.252 0.092 -0.433 -0.072 0.006 

PC-2 1 0.411 0.172 0.073 0.749 0.017 

Dispersion 1 0.149 0.058 0.069 0.320  

 

Table 32. Risk rate ratios for proposed HGF model. 

Parameter Risk Rate Ratio 95% LCL 95% UCL 

PC-1 0.777 0.649 0.931 

PC-2 1.508 1.076 2.115 

 

Table 33. LR statistics for Type III analysis for proposed HGF model. 

Parameter Numerator 
DF 

Chi-
Square 

Pr > Chi-
square 

PC-1 1 6.97 0.008 

PC-2 1 4.85 0.028 

 

The constants required to compute the new HGF rate are listed in Table 34. 

The computation procedure is similar to that in Section 4.5. The new PC-1 and PC-2 based on 
new observed values (𝑥𝑥1,𝑛𝑛𝑛𝑛𝑛𝑛~𝑥𝑥5,𝑛𝑛𝑛𝑛𝑛𝑛) are computed as: 

𝑃𝑃𝑃𝑃1,𝑛𝑛𝑛𝑛𝑛𝑛 =  ∑ 𝛼𝛼1𝑖𝑖 × 𝑥𝑥𝑖𝑖,𝑛𝑛𝑛𝑛𝑛𝑛−𝑥̅𝑥𝑖𝑖
𝑠𝑠𝑖𝑖

5
𝑖𝑖=1  

𝑃𝑃𝑃𝑃2,𝑛𝑛𝑛𝑛𝑛𝑛 =  ∑ 𝛼𝛼2𝑖𝑖 × 𝑥𝑥𝑖𝑖,𝑛𝑛𝑛𝑛𝑛𝑛−𝑥̅𝑥𝑖𝑖
𝑠𝑠𝑖𝑖

5
𝑖𝑖=1  

where 𝛼𝛼𝑖𝑖’s are the standardized scoring coefficients for the ith metric in PC-1 and PC-2; 𝑥̅𝑥𝑖𝑖 and 𝑠𝑠𝑖𝑖 
are the mean and standard deviation of the ith metric in the original study data, i.e., the current 
study data, not related to future observations. The values of the related coefficients are shown in 
Table 34. 
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Table 34. Constants for computing new principal component score for HGF proposed 
model. 

Metric 𝜶𝜶𝟏𝟏𝟏𝟏 𝜶𝜶𝟐𝟐𝟐𝟐 𝒙𝒙�𝒊𝒊 𝒔𝒔𝒊𝒊 

CSR 1.5 0.471 -0.041 4.440 0.907 

CSR 3 0.445 0.098 4.880 1.350 

CSR 18 0.322 -0.063 1.920 1.794 

Meta -0.016 0.510 4.648 1.375 

Ratio -0.014 0.509 0.551 0.206 

 

Then the new HGF risk rate (i.e., the number of HGF events per 100 hours driven) is computed 
as: 

CNC rate𝑛𝑛𝑛𝑛𝑛𝑛 =  exp (𝛽𝛽0 + 𝛽𝛽1 × 𝑃𝑃𝑃𝑃1,𝑚𝑚𝑚𝑚𝑚𝑚 +  𝛽𝛽2 × 𝑃𝑃𝑃𝑃2,𝑛𝑛𝑛𝑛𝑛𝑛), 

 where β’s are estimated regression coefficients presented in Table 31.
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CHAPTER 6. SUMMARY AND DISCUSSION 

The goal of this study was to evaluate the relationship between senior drivers’ fitness profiles 
and driving risk represented by CNC and HGF rate. Principal component analysis was used for 
metric dimensionality reduction and group classification. Due to the moderate variance over-
dispersion issue in the CNC and HGF data, an NB regression model was applied to model the 
relationship between CNC and HGF rates and participants’ fitness profiles, as well as the 
relationship between CNC rate and HGF rate.  

With respect to the CNC analysis, contrast sensitivity (CSR 1.5 ~ CSR 18) has a significant 
impact on crash risk. The better the contrast sensitivity (higher the CSR scores), the lower the 
crash risk. There is also some statistical evidence that CNC rate is positively associated with 
HGF rate among senior drivers. With respect to the HGF analysis, some contrast sensitivity 
(CSR 1.5, 3, 18) and metacognition measures (self-estimated mental sharpness [Meta] and 
metacognition ratio [Ratio]) are associated with HGF rate. Lower contrast sensitivity scores and 
higher Meta and Ratio scores are related to elevated HGF event rate. 

A recent study sponsored by the National Highway Traffic Safety Administration (NHTSA) 
looked at the degree to which a variety of metrics of functional ability could be used to 
proscriptively predict crash and serious traffic violation rates (Staplin, Lococo, Gish, & Joyce, 
2012). Assessment metrics, mostly in the cognitive domain, were chosen for inclusion based on 
successful evaluations in prior research efforts or more novel metrics which appeared promising 
based mainly on face or construct validity. Results of that study showed greatest promise for a 
route-planning/maze-solving assessment. In addition, a metric related to contrast sensitivity was 
also significantly related to crash involvement. 

While the current study did not employ a maze-based metric per se, results for the contrast 
sensitivity-based metrics did support the results for similar metrics found by Staplin, Lococo, 
Gish, and Joyce (2012), as this dimension of visual ability was also the most strongly related to 
CNC and HGF event rates among all metrics evaluated in the current study. Others using 
retrospective methods have also found positive results in terms of relating contrast sensitivity to 
crash rate (see Owsley, Stalvey, Wells, Sloane, & McGwin, 2001). Contrast sensitivity refers to 
the eye’s ability to resolve information presented with limited contrast (i.e., where there is 
relatively little difference between the light and dark aspects of a stimulus—the lower the 
difference in contrast from which the information or content can reliably be retrieved, the greater 
the contrast sensitivity of that observer).  

In addition, two metacognition metrics in the current study were also related to HGF event rate. 
Metacognition refers to the individual’s insight into his/her current cognitive status. The first 
metacognition metric was represented by simply asking participants how sharp they felt relative 
to how they were in their 40s and 50s (“Meta”). The second (“Ratio”) was represented by the 
ratio of “Meta” to the participant’s actual score on the Abbreviated Mental Test Score (AMTS). 
The higher the “Ratio” metric, the greater the discrepancy between perceived and actual levels of 
cognitive functioning. Lundqvist and Alinder (2007) also found positive results related to 
metacognitive abilities and driving in evaluating 30 drivers with acquired brain injury (i.e., not 
an older sample per se). These individuals were assessed concerning cognitive functions and 
driving performance. In addition, the drivers assessed their driving performance through self-
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rating. Researchers concluded that the members of the group that made a more realistic 
evaluation of their driving performance were more aware of their cognitive abilities and were 
better able to adjust their driving performance. De Raedt and Ponjaert-Kristoffersen (2009) 
showed that older drivers may inherently compensate for loss of functional abilities, but their 
results did not indicate that metacognition was a mediating factor in this process. Methodological 
issues may have played a role in this outcome. 

This study successfully demonstrated that, even with a relatively small pilot sample, a certain 
parsimonious set of functional assessments can be used to reliably predict safety-related driving 
behaviors measured using the NDS paradigm. These functional assessments include contrast 
sensitivity as well as metrics related to the driver’s metacognitive state. The safety-related 
driving behaviors include CNC and HGF rates. It is believed that this is the first fitness-to-drive 
study based on naturalistic driving data.  

Future work can seek to utilize the far larger naturalistic data stores associated with the Second 
Strategic Highway Research Program (SHRP 2) NDS and other similar studies to further refine 
and validate these findings.  

Once refined and validated, this work can support the application of particular assessments that 
can be meaningfully and efficiently applied in any environment where senior drivers are 
screened or assessed for fitness to drive. 

One limitation of this study was the low number of driving participants relative to the number of 
metrics of functional ability assessed. This was addressed via the dimensionality reduction and 
modeling approaches used as described in the main body of the report.  

Also with respect to the contrast sensitivity scores, only those scores from the right eye were 
related to the driving safety metrics. It is possible that there was a methodological problem with 
the collection of the left eye sensitivity metrics or that the truer metric is related to one’s 
dominant eye (i.e., the one producing the best sensitivity score at a particular spatial frequency).
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APPENDIX A. LIST OF 48 FITNESS ASSESSMENT METRICS USED 

Physical Ability (13 total) 

Ankle Torque Max/Plantar and Dorsiflexion (2) 

Hip Torque Max/Flex and Extend (2) 

Upper Body Torque Max/Left and Right (2) 

Ankle Initial Reaction Time (RT, mean of Plantar and 
Dorsiflexion)(1) 

Ankle Peak RT (mean of Plantar & Dorsiflexion) (1) 

Hip Initial RT (mean of Flex and Extend) (1) 

Hip Peak RT (mean of Flex and Extend) (1) 

Upper Body Initial RT (mean of Left and Right) (1) 

Upper Body Peak RT (mean of Left and Right) (1) 

Head–neck–torso flexibility (1) 

Visual Ability (19 total) 

Dynamic visual acuity @ 12, 24, and 36 deg/s (DPS) (3) 

Discomfort Glare Rating (1) 

Glare Static Acuity (1) 

Glare contrast sensitivity @ 4, 8, and 16 cycles/deg (3) 

Static Visual Acuity (Snellen) (1) 

Contrast sensitivity (Right Eye) @ spatial frequencies: 1.5, 3, 6, 
12, and 18 cycles per degree (5); note: raw non-transformed 
scores, 1-9, were used for each frequency) 

Total number of color vision plates correct (1) 

Stereopsis (1) 

Far acuity (Optec) (1) 

Far vertical and lateral phoria (2) 
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General and Health-Related Info (10 total) 

Height (in.) – self report (1) 

Weight (lbs) – self report (1) 

Total number of reported health problems (1) 

Faces pain scale (1) 

WHO (five) Well-Being Index 1998 Version (1) 

Total number of sleep problems (1) 

Total number of sleep disorders (1) 

Total hours of sleep estimated per day (1) 

Education (1) 

Total years driving (1) 

Cognitive Ability (6 total) 

1. Abbreviated Mental Test Score (AMTS) (1) 

2. Self Estimate: how mentally sharp compared w/ 40s and 50s 
(1) 

3. Metacognition Ratio: SE/AMTS (1) 

4. Visualizing Missing Information (1) 

5. Useful Field of View™ (1) 

6. Trail Making B (1) 
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